skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chechik, Marsha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In emergency response scenarios, autonomous small Unmanned Aerial Systems (sUAS) must be configured and deployed quickly and safely to perform mission-specific tasks. In this paper, we present \DR, a Software Product Line for rapidly configuring and deploying a multi-role, multi-sUAS mission whilst guaranteeing a set of safety properties related to the sequencing of tasks within the mission. Individual sUAS behavior is governed by an onboard state machine, combined with coordination handlers which are configured dynamically within seconds of launch and ultimately determine the sUAS' behaviors, transition decisions, and interactions with other sUAS, as well as human operators. The just-in-time manner in which missions are configured precludes robust upfront testing of all conceivable combinations of features -- both within individual sUAS and across cohorts of collaborating ones. To ensure the absence of common types of configuration failures and to promote safe deployments, we check vital properties of the dynamically generated sUAS specifications and coordination handlers before sUAS are assigned their missions. We evaluate our approach in two ways. First, we perform validation tests to show that the end-to-end configuration process results in correctly executed missions, and second, we apply fault-based mutation testing to show that our safety checks successfully detect incorrect task sequences. 
    more » « less